Apache Flink

Streaming
DATA-DRIVEN
DISTRIBUTED
DATA STREAM
PROCESSING
Seif Haridi, KTH/SICS 533:
Paris Carbone, KTH | 223°¢
[

Gyula Fora, SICS

1 year of Flink - code oot

April 2014 April 2015

® ® >

L] L]
n L]
Stratosphere accepted as Apache Incubator Project .
16 Apr 2014
We are happy to aEnouN:z that Stratosphere has been accepted as a project for the Apache Incubator. The -
proposal has been accepted by the Incubator PMC members earlier this week. The Apache Incubator is the first -
step in the process of giving a project to the Apache Software ion. While under incubation, the project will
mave to the Apache infrastructure and adopt the community-driven develapment principles of the Apache .
Foundation. Projects can graduate from incubation to become top-level projects if they show activity, a healthy
community dynangc, and releases. ™
W are glad ro have Alan Gates as champlon on board, as well a5 a set of great mentors, including Sean Owen, Ted
Dunning, Owen OWMalley, Henry Saputra, and Ashutosh Chauhan. We are confident that we will make this a great L
open source effort.
L] L]
n L]
0Comments Apache Flink ® Login -
L] L]
W Recommend [% Share Sort by Best -
n L]
- "
L]
o
L] =
= ©
] Q e}
9 @©
n O —
e
©
L]
I
L]

DataSet API (Java/Scala) ataSet (Java/Scala) taStream (Java/Scala)

Community growth e

120 - °
[
.‘
100 = #unique contributors by git)
commits

80 - 0'

[

o
60 -

‘.

w0 .

20 - ”.

ago.-10 feb.-11 sep.-11 abr.-12 oct.-12 may.-13 nov.-13 jun.-14 dic.-14 jul.-15

Introduction

e The Flink Vision (=
e Flink Stack Overviews
e Programming Model

e Execution Model

What is Apache Flink

Distributed Data Flow Processing System
= Focused on large-scale data analytics
= Unified real-time stream and batch processing
= Easy and powerful APls in Java / Scala (+ Python)

= Robust and fast execution backend

@ THE FLINK VISION

Message
Queues

“Provide a use-case
complete solution that can
unify batch and streaming Apache
data processing tasks under Flink

the same codebase and
execution runtime”

Data Streams

Data Sets
HDFS

ETL

Relational Queries
Graph analysis
Machine Learning
Streaming analytics

@8 WHAT ARE WE BUILDING

An englne that puts equal emphasls
to streaming and batch

Kafiea, RabbItMQ, ..

HDFS, JDEC, ...

€: THE FLINK STACK &

-
O
-

Dataflow
SAMOA

Hadoop |__DataSet (Java/Scala) DataStream (Java/Scala)
il Flink Optimizer

Flink Runtime

Stream processing

Data stream: Infinite sequence of data arriving in a
continuous fashion.

Stream processing: Analyzing and acting on real-time
streaming data, using continuous queries

Smart Pricing

Transaction
ost

warehouse surveillance gat
Risk Fraud o e gnalytics

management
routing o trading Intelligence
E-commerce

setaerket augmentation

3 Parts of a Streaming Infrastructure |¢

Server Logs

Sensors

Transaction
logs

G“athering

katka ©

Broker

Analysis

10

Streaming landscape

Apache Storm

* True streaming over distributed dataflow
» Low level API (Bolts, Spouts) + Trident

Spark Streaming

» Stream processing emulated on top of batch system (non-native)
 Functional API (DStreams), restricted by batch runtime

Apache Samza

* True streaming built on top of Apache Kafka, state is first class citizen
« Slightly different stream notion, low level API

Apache Flink

* True streaming over stateful distributed dataflow

* Rich functional API exploiting streaming runtime; e.g. rich windowing
semantics

11

Flink Streaming

6/15/2015 KKS, BIDAF

12

What is Flink Streaming 8

= Native, low-latency stream processor

= Expressive functional API

* Flexible operator state, stream windows
= Exactly-once processing semantics

W

13

PROGRAMMING MODEL

» Data Stream

lllhl..-..,., ‘hll-l'“ : Elhl-".l
« An abstract data type 8 o < o i

representing an
unbounded, partitioned
immutable sequence of
events

« Stream Operators

« Stream transformations
that generate new output
Data Streams from input
ones

14

A EXECUTION MODELS

1) BAtched/Stateless (scheduled in Batches)

DISTRIBUTED STREAMING OVER
STATELESS SHORT-LIVED TASKS BATCHES

—

(Hadoop, Spark (Spark Streaming)

2) DataFlow/STATEFUL (continuous/scheduled once)

3 o0 ﬂ N ’
long-lived task execution 000 < state is kept inside
. tasks
. | o® "B

(Storm, Samza, Naiad, Flink)
15

Native vs non-native streaming e

Non-native streaming

Stream B B B B
discretizer

v oo Voo Mo
while (true) { SparK

// get next few records

// 1ssue batch computation i i i i
} ‘BN EE

Native streaming
Long-standing
operators

while (true) {
// process next record Flink i
}

€: WHY DATAFLOW

1) BATCHED/STATELESS (SCHEDULED IN BATCHES)

« Irivial Fault Tolerance (lost batches can be recomputed)
» High Throughput

» High Latency (batching latency)

» Limited Expressivity (stateless nature of tasks)

2) DATAFLOW/STATEFUL (CONTINUOUS/SCHEDULED ONCE)

» Low Latency
« True Streaming
«» Non trivial Fault Tolerance
« (tasks should recover from consistent state)

17

OVERVIEW @

e Stream Sources, Sinks
e Transformations
e Windowing Semantics

18

Overview of the API se

Data stream sources

o File system

e Message queue connectors
e Arbitrary source functionality

Stream transformations
o Basic transformations: Map, Reduce, Filter, Aggregations...
e Binary stream transformations: CoMap, CoReduce...

o Windowing semantics: Policy based flexible windowing (Time, Count,
Delta...)

e Temporal binary stream operators: Joins, Crosses...
o Native support for iterations

Data stream outputs
For the details please refer to the programming guide:

19

& TRANSFORMATIONS =

Basic Transformations

+» DataStream Sources

«~ map, filter, reduce, VESSAGE
r lon . FILE SYSTEM
aggregations (eg. max, sum) FILE SYSTEM
CUSTOM
« reduceis incremental ‘OURCE
Stream(1, 2, 3, 4, ...).sum =>

Stream(1, 3, 6, 10,...) H

Binary Transformations

« merge (union) , coMap,
coReduce (two streams)

« Join, cross (defined per
window) 20

Binary stream transformations

e Apply shared transformations on streams of different
types.

e Shared state between transformations
e CoMap, CoFlatMap, CoReduce...

public iInterface CoMapFunction<INl, IN2, OUT> {

public OUT mapl(IN1 value);
public OUT mapZ2(IN2 value);

@ STREAM WORD COUNT

case class Word(word: String, count: Long)

val 1nput
val words

env.socketTextStream(host, port);

input.flatMap {In => In_.split(""\\W+")}
-map(w => Word(w,1))

val counts = words.groupBy("word').sum(*'count')

-print()

e In grouped streams, for each incoming tuple the
selected field is transformed to the aggregated
value

22

@ WINDOWING SEMANTICS

Trigger and Eviction policies
» window(<eviction>, <trigger>)
+ window(<eviction>).every(<trigger>)

Built-in policies:

— Time: Time.of(length, TimeUnit/Custom timestamp)

— Count: Count.of(windowSize)

— Delta: Delta.of(treshold, Distance function, Start value)

Window transformations:
— Reduce
— mapWindow

Custom trigger and eviction policies can also be trivially implemented

23

é WINDOWED WORDCOUNT e

case class Word(word: String, count: Long)

env.socketTextStream(host, port);

input flatMap {

line => line.sphit(""\\W+") _map(Word(_,1)) }
-window(Count.of(20)) .every(Count.of(10))

val counts = words.groupBy(*'word") .sum("'count™)

val 1nput
val words

wordcount #2
wordcount #1

0 10 20 30 #words

24

Flexible windows

AT
Eea
Delta
of
5%
price

o

groupby groupby

symbol symbol

case class Count(symbol: String, count: Int)
val defaultPrice = StockPrice("", 1000)

//Use delta policy to create price change warnings

val priceWarnings = stockStream.groupBy("symbol™)
.window(Delta.of(©.05, priceChange, defaultPrice))
.mapWindow(sendwWarning _)

//Count the number of warnings every half a minute
val warningsPerStock = pricelWarnings.map(Count(_, 1))
.groupBy("symbol™)
.window(Time.of(30, SECONDS))
sum("count™)

Tumbling
30 sec

window

25

More at: http://flink.apache.org/news/2015/02/09/streaming-example.html

Performance

= Performance optimizations
- Effective serialization due to strongly typed topologies
+ Operator chaining (thread sharing/no serialization)
- Different automatic query optimizations

= Competitive performance
« ~1.5m events / sec / core

* As a comparison Storm promises ~ 1m tuples / sec/
node

€: OPTIMISATIONS

 Window Pre-aggregates

- Implemented: sliding (panes), tumbling/jumping window pre-
aggregates

« Pending: Operator Sharing, Optimistic pre-aggregations

* Operator Chaining
» Collapsing multiple operators into a single execution thread

groupBy

'Y Reduce

« Operator Reordering Cw o
1

27

Fault Tolerance

Overview

Fault tolerance in other systems
Message tracking/acks (Storm)
RDD re-computation (Spark)

Fault tolerance in Apache Flink
Based on consistent global snapshots
Algorithm inspired by Chandy-Lamport
Low runtime overhead, stateful exactly-once

semantics

72 PROCESSING GUARANTEES

« EXxplicit state representation

» Periodic minimal state snapshotting

« Partial execution graph recovery

» Towards exactly-once processing semantics

30

Checkpointing / Recovery

Operator checkpoint

Pushes checkpoint barriers starting

through the data flow

Checkpoint done
barrier

_ _ checkpoint in
After barrier = : Before barrier = progress

Not in snapshot part of the snapshot

(backup till next snapshot)
Asynchronous Barrier Snapshotting for globally consistent checkpoints

Checkpoint done

State management

State declared in the operators is managed and
checkpointed by Flink

Pluggable backends for storing persistent
snapshots

» Currently: JobManager, FileSystem (HDFS, Tachyon)

State partitioning and flexible scaling in the
future

A USE CASE

Get stock price updates from multiple sources
Generate online statistics on the stock data
Detect stock price fluctuations

Detect twitter trends on stock mentions
Correlate trends and fluctuations

6/15/2015 KKS, BIDAF 33

€. USE CASE STEPS

+» Stock DataStream creation

» Rolling window analytics

« Detecting stock price fluctuations

« Detecting trends from twitter streams

« Correlating stock fluctuations with trends

» Detailed explanation and source code on our blog

*

34

CREATING STOCK STREAMS |:

StockPrice(SPX, 2113.9) 1 {3'1
Ty
2t i T, B4931.7
Nl st : 1 N (4) StockPrice{§®, £123.9)
-l [Stock StockPrice{FISE, &931.7)
N T Stream StockPricefKIP, £3.4)
[l:l StockPrice{EIF, 2&.&)
"HDP, 23.8" Socket A Paree
"HOP, 26.8" Source {2]

StockPricelsymbol @ String, price : Couble)
eny = StreanExecutionEnvironment.getExecuticnEnvironment

{1] socketStockStream = env.socketTextStrean{"lccalhost™, 999%)
[2] Mapi{x =» { wval split = x.split{",")
StockPrice(split{@8}, split{l)}.toDcuble} })

13] { SPY_Stream = env.addSource(generatestock("SFX"Y{18))
FTSE_Stream = env.addSource{generateStoc<("FTSE"){28)} _)
{4] stockStream = socketStockStream.merge (SPX_Stream, TTS5E_STREAM)

35

ROLLING ANALYTICS

. Adin By

|\ price ,I {2} [wtnctl'* calHDP, 23.8)]

ZtockPrice{S®x, 1113.0% fg”___ {1] _— — ",
itockPrize{FTSE, 6931.7) [stock [MaxBy I StockPrice{SPx, 2113.9)
StockPrize{HDP, 23.8) I.\Stn:am p-m {3} itnckljrfce{rTEE. Er".!E!L?}
A StockPrize(MOP, 26.6) - o | StockPrice{kDP, .6)
i . ™
AMean) StockPrice{SPL, 2123.9)
\ Price) {4} StockPrice{FTSE, &931.7}
M | StockPrice{FDP, 25,2)

windowedStream = stockStream
(1} AIndow{Tire.of (1@, SECONDS)Y.every{Time.of(5, SECCNDS))

1 lowest = windowedStream.ninBy("price™)
(3} maxBy5Stock = windowedStrean.groupBy{ “symbol"). naxBy("price")
] rollingMean = windowedStrean.groupBy (“symbol®).mapkindow{mean _)

36

STOCK PRICE FLUCTUATIONS it

Stock®rice(EPX, 2113.%)

Stock®rice(FTEE, &031.7)

Stock®rice(HB®, JE! &) “'] {3:'
%, StockPrice(HB®, 2&6.5) {2]

(4)

.-..-".-'__--."'\-\H T
[seock | 9oubu| Oog /— N\ aroupb | Tumbling |
- == —— £ Warning Cenrrt .' 30 sec | Sum

\ Stream [ool 4 osymbiol | efmalema b

StockPrice{EDP, 23,4) linunt{HﬂP. 1}
StockPrice{FDF, &, &)

Count{symbel : 5tring, count : Int)

priceWarnings = stockStrean.groupBy(“symbol")

{1] Jindow{Delta.of {8.85, priceChange, defaultPrice))
{2} MapWindow(senddarning _)
warningsPerStock = priceWarnings.rap{Count{_, 1}) .grovpBEy{"symbol")
(3) Jwindow{Timz,of(38, SECONDS))
{4} Lsunf“count”)

37

000
0000
(X X
{ XX
[X)
(
“"hép is on tha piss!”
"I wish I bovght ~ore
YHOZ and HOP stocks” {2] [3] M‘j
__.-"'f- --HH_' e ---ﬂ"h‘_ e N - —
i \ f Symbol \ F \ groupby | Tismbling F. "x_l
| Tokenizer |—=| Eker | Count ——| 30 sec | Sum |
\ o\ \ Jsumbel | window _ S
1‘&‘____ ____rf'r . e
- Count{HOP, 2]
(1) Count{¥HIO, 1}

J

{11 tweetStrean = env.addScurce{generate Tweets)

{2] { menticnedSynbols = tweetStreawm. flatVap(tweet =» tweet.split{" "))
map{_.tolpperCase()})
(3) Filter{symbols.contains{_})

tweetsPerStock = menticnedSymbols.map{Count{_, 1)} .groupBy({"symbol"}
(4} .window Time.of (38, SECONDS))Y
. sum! " count")

38

€L JOINING STREAMS

L Count{HDF, 1]

] Vitarmiregs {l] (2]
“.:a::::::n“ =| Correlation
LA
L Count{HOP, 2) 1 Tweets

Count{YH3O, 1)

tweetsAnddarning = warningsPerStock. join{tweetsPerStock)
onWindowf{3@, SECCNDS)

[11 where{ "synbol™)
.2qualTol"symbol”){ (cl, c2) =» {cl.count, c2.count} }

rollingCorrelation = tweetsAndNarning
(2) { cwindow{Tine. of (38, SECONDS))

MapWindow(computeCorrelation _}

39

Background slides

ONGOING
WORK

e Machine Learning Pipelines
e Streaming Graphs

41

Streaming roadmap for 2015

e Improved state management
New backends for state snapshotting

Support for state partitioning and incremental
snapshots

Master Failover
e Improved job monitoring

e Integration with other Apache projects
SAMOA (PR ready), Zeppelin (PR ready), Ignite

e Streaming machine learning and other new
libraries

42

ML PIPELINES &

Combining scikit-learn and MOA for a first-
ever distributed, multi-paradigm ML
pipelines library

Offline Model

43

€. STREAMING GRAPHS

© &

9 06000 00 i

« Streaming newly generated graph data
« Keeping only the fresh state in memory
« Continuously computing graph approximations

44

€ INTEGRATIONS

« Apache Samoa (incubating)

* Flink Deployments with Karamel

« Table API

« Google DataFlow API (done)

« Apache Storm Compatibility Layer

45

€ LINKS

Project Website: hitps://flink.apache.org/

Project Repo: hitps://github.com/apache/ilink

Streaming Guide: hiip://cl.apache.org/projects/ilink/flink-docs-
master/streaming quide.html

User Mallist: user@flink.apache.org

46

