
Apache Flink
Streaming

Seif Haridi, KTH/SICS
Paris Carbone, KTH

Gyula Fóra, SICS

6/15/2015 KKS, BIDAF 1

DATA-DRIVEN
DISTRIBUTED
DATA STREAM
PROCESSING

1 year of Flink - code

April 2014 April 2015

Community growth

3

0

20

40

60

80

100

120

ago.-10 feb.-11 sep.-11 abr.-12 oct.-12 may.-13 nov.-13 jun.-14 dic.-14 jul.-15

#unique contributors by git
commits

Introduction

 The Flink Vision
 Flink Stack Overview
 Programming Model
 Execution Model

6/15/2015 KKS, BIDAF 4

What is Apache Flink

5

Distributed Data Flow Processing System

▪ Focused on large-scale data analytics

▪ Unified real-time stream and batch processing

▪ Easy and powerful APIs in Java / Scala (+ Python)

▪ Robust and fast execution backend

Reduce

Join

Filter

Reduce

Map
Iterate

Source

Sink

Source

“Provide a use-case
complete solution that can
unify batch and streaming
data processing tasks under
the same codebase and
execution runtime”

THE FLINK VISION

Apache
Flink

Message
Queues

HDFS

ETL
Relational Queries
Graph analysis
Machine Learning
Streaming analytics

Data Streams

Data Sets

6

WHAT ARE WE BUILDING

7

THE FLINK STACK

8

9

▪ Data stream: Infinite sequence of data arriving in a
continuous fashion.

▪ Stream processing: Analyzing and acting on real-time
streaming data, using continuous queries

Stream processing

3 Parts of a Streaming Infrastructure

10

Gathering Broker Analysis

Sensors

Transaction
logs

…

Server Logs

11

Apache Storm
• True streaming over distributed dataflow
• Low level API (Bolts, Spouts) + Trident

Spark Streaming
• Stream processing emulated on top of batch system (non-native)
• Functional API (DStreams), restricted by batch runtime

Apache Samza
• True streaming built on top of Apache Kafka, state is first class citizen
• Slightly different stream notion, low level API

Apache Flink
• True streaming over stateful distributed dataflow
• Rich functional API exploiting streaming runtime; e.g. rich windowing

semantics

Streaming landscape

Flink Streaming

6/15/2015 KKS, BIDAF 12

What is Flink Streaming

13

 Native, low-latency stream processor
 Expressive functional API
 Flexible operator state, stream windows
 Exactly-once processing semantics

PROGRAMMING MODEL

★ Data Stream

★ An abstract data type
representing an
unbounded, partitioned
immutable sequence of
events

★ Stream Operators

★ Stream transformations
that generate new output
Data Streams from input
ones

14

1) BAtched/Stateless (scheduled in Batches)

EXECUTION MODELS

2) DataFlow/STATEFUL (continuous/scheduled once)

STATELESS SHORT-LIVED TASKS

long-lived task execution

(Hadoop, Spark)

DISTRIBUTED STREAMING OVER
BATCHES

(Spark Streaming)

(Storm, Samza, Naiad, Flink)

state is kept inside
tasks

15

Native vs non-native streaming

16

Stream
discretizer

Job Job Job Jobwhile (true) {
// get next few records
// issue batch computation

}

while (true) {
// process next record

}

Long-standing
operators

Non-native streaming

Native streaming

WHY DATAFLOW

★ Trivial Fault Tolerance (lost batches can be recomputed)
★ High Throughput
★ High Latency (batching latency)
★ Limited Expressivity (stateless nature of tasks)

1) BATCHED/STATELESS (SCHEDULED IN BATCHES)

2) DATAFLOW/STATEFUL (CONTINUOUS/SCHEDULED ONCE)

★ Low Latency
★ True Streaming
★ Non trivial Fault Tolerance

★ (tasks should recover from consistent state)

17

API
OVERVIEW

18

 Stream Sources, Sinks
 Transformations
 Windowing Semantics

Overview of the API

 Data stream sources
 File system
 Message queue connectors
 Arbitrary source functionality

 Stream transformations
 Basic transformations: Map, Reduce, Filter, Aggregations…
 Binary stream transformations: CoMap, CoReduce…
 Windowing semantics: Policy based flexible windowing (Time, Count,

Delta…)
 Temporal binary stream operators: Joins, Crosses…
 Native support for iterations

 Data stream outputs
 For the details please refer to the programming guide:

 http://flink.apache.org/docs/latest/streaming_guide.html 19

Reduce

Merge

Filter

Sum

Map

Src

Sink

Src

TRANSFORMATIONS

MESSAGE
QUEUE
FILE SYSTEM
TCP SOCKET
CUSTOM
SOURCE

Basic Transformations

★ map, filter, reduce,
aggregations (eg. max, sum)

★ reduce is incremental
Stream(1, 2, 3, 4, …).sum =>
Stream(1, 3, 6, 10,…)

Binary Transformations

★ merge (union) , coMap,
coReduce (two streams)

★ join, cross (defined per
window) 20

★ DataStream Sources

Binary stream transformations

 Apply shared transformations on streams of different
types.

 Shared state between transformations
 CoMap, CoFlatMap, CoReduce…

public interface CoMapFunction<IN1, IN2, OUT> {

public OUT map1(IN1 value);
public OUT map2(IN2 value);

}

STREAM WORD COUNT

case class Word(word: String, count: Long)

val input = env.socketTextStream(host, port);
val words = input.flatMap {ln => ln.split("\\W+")}

.map(w => Word(w,1))
val counts = words.groupBy("word").sum("count")

.print()

22

 In grouped streams, for each incoming tuple the
selected field is transformed to the aggregated
value

WINDOWING SEMANTICS
• Trigger and Eviction policies

• window(<eviction>, <trigger>)
• window(<eviction>).every(<trigger>)

• Built-in policies:
– Time: Time.of(length, TimeUnit/Custom timestamp)
– Count: Count.of(windowSize)
– Delta: Delta.of(treshold, Distance function, Start value)

• Window transformations:
– Reduce
– mapWindow

• Custom trigger and eviction policies can also be trivially implemented

23

WINDOWED WORDCOUNT

case class Word(word: String, count: Long)

val input = env.socketTextStream(host, port);
val words = input flatMap {

line => line.split("\\W+").map(Word(_,1)) }
.window(Count.of(20)).every(Count.of(10))

val counts = words.groupBy("word").sum("count")

24

#words10 20 30

wordcount #1

wordcount #2

0

Flexible windows

25

More at: http://flink.apache.org/news/2015/02/09/streaming-example.html

26

▪ Performance optimizations
• Effective serialization due to strongly typed topologies
• Operator chaining (thread sharing/no serialization)
• Different automatic query optimizations

▪ Competitive performance
• ~ 1.5m events / sec / core
• As a comparison Storm promises ~ 1m tuples / sec /

node

Performance

OPTIMISATIONS
• Window Pre-aggregates

• Implemented: sliding (panes), tumbling/jumping window pre-
aggregates

• Pending: Operator Sharing, Optimistic pre-aggregations

• Operator Chaining
• Collapsing multiple operators into a single execution thread

• Operator Reordering

27

Fault Tolerance

6/15/2015 KKS, BIDAF 28

Overview

29

▪ Fault tolerance in other systems
• Message tracking/acks (Storm)
• RDD re-computation (Spark)

 Fault tolerance in Apache Flink
• Based on consistent global snapshots
• Algorithm inspired by Chandy-Lamport
• Low runtime overhead, stateful exactly-once

semantics

PROCESSING GUARANTEES

★ Explicit state representation

★ Periodic minimal state snapshotting

★ Partial execution graph recovery

★ Towards exactly-once processing semantics

30

Checkpointing / Recovery

31
Asynchronous Barrier Snapshotting for globally consistent checkpoints

Pushes checkpoint barriers
through the data flow

Operator checkpoint
starting

Checkpoint done

Data Stream

barrier

Before barrier =
part of the snapshot

After barrier =
Not in snapshot

Checkpoint done

checkpoint in
progress

(backup till next snapshot)

State management

32

 State declared in the operators is managed and
checkpointed by Flink

 Pluggable backends for storing persistent
snapshots
• Currently: JobManager, FileSystem (HDFS, Tachyon)

 State partitioning and flexible scaling in the
future

A USE CASE

 Get stock price updates from multiple sources
 Generate online statistics on the stock data
 Detect stock price fluctuations
 Detect twitter trends on stock mentions
 Correlate trends and fluctuations

6/15/2015 KKS, BIDAF 33

USE CASE STEPS

★ Stock DataStream creation

★ Rolling window analytics

★ Detecting stock price fluctuations

★ Detecting trends from twitter streams

★ Correlating stock fluctuations with trends

★ Detailed explanation and source code on our blog
★ http://flink.apache.org/news/2015/02/09/streaming-example.html

34

CREATING STOCK STREAMS

35

ROLLING ANALYTICS

36

STOCK PRICE FLUCTUATIONS

37

CREATING TREND STREAMS

38

JOINING STREAMS

39

Background slides

6/15/2015 KKS, BIDAF 40

ONGOING
WORK

41

 Machine Learning Pipelines
 Streaming Graphs

Streaming roadmap for 2015

 Improved state management
 New backends for state snapshotting
 Support for state partitioning and incremental

snapshots

 Master Failover

 Improved job monitoring

 Integration with other Apache projects
 SAMOA (PR ready), Zeppelin (PR ready), Ignite

 Streaming machine learning and other new
libraries 42

Combining scikit-learn and MOA for a first-
ever distributed, multi-paradigm ML
pipelines library

ML PIPELINES

Offline Model

43

STREAMING GRAPHS

• Streaming newly generated graph data
• Keeping only the fresh state in memory
• Continuously computing graph approximations

time

44

INTEGRATIONS

• Apache Samoa (incubating)
• Flink Deployments with Karamel
• Table API
• Google DataFlow API (done)
• Apache Storm Compatibility Layer

45

LINKS

46

Project Website: https://flink.apache.org/

Project Repo: https://github.com/apache/flink

Streaming Guide: http://ci.apache.org/projects/flink/flink-docs-
master/streaming_guide.html

User Mailist: user@flink.apache.org

