
Elasticity Management 
in the Cloud 
José M. Bernabéu-Aubán 



The Cloud and its goals 

•  Innovation of the Cloud 
– Utility model of computing 
– Pay as you go 
– Variabilize costs for everyone 

•  But the Infrastructure providers 

•  Underlying theme 
– Optimize 
– Use only what you need 
– Do not overinvest 



Ideal 

Cloud 

Admi
ssion SaaS 

App



Motivation 

No developer left behind: 
Bring all of them to the cloud 

What is needed? 



The Cloud  

•  Service guarantees 
– How to express them 

•  Service continuity 
–  Promptly react to failures 

•  Losing as little state as possible 
– Carefully perform software updates  

•  Maintain user’s expected performance level 
–  Promptly react to load changes 

•  When possible, predict them 

Problems SaaS providers need to solve 



The Cloud 

•  The SLA: A contract 
–  I’ll do this if you do that 

•  SLOs: Service Level Objectives 
–  Penalties included 

•  Optimize benefits 
– Compute a penalty function out of an SLA: Pf 

•  Factor-in costs of SLA violations 
–  Avoid Pf increases  

•  When failures, or updates 
•  When load changes 
•  While minimizing resources 

SaaS provider’s concerns 



The Cloud 

•  Elasticity: 
– Degree to which a Service is managed optimally 

•  SaaS management should be elastic 
•  Difficult optimization problem 
–  Intrinsic difficulties 
– Out of the reach for many developers 

•  Especially those with, maybe, good business ideas 

•  Who provides Elasticity? 
 

Elasticity 



The Cloud 
NIST layers 

SaaS 
PaaS 
IaaS 



The Cloud 

•  NIST definition of PaaS 
•  A layer where … 

the capability provided to the consumer is to deploy onto 
the cloud infrastructure consumer-created or acquired 
applications created using programming languages, 
libraries, services, and tools supported by the provider. The 
consumer does not manage or control the underlying 
cloud infrastructure including network, servers, operating 
systems, or storage, but has control over the deployed 
applications and possibly configuration settings for the 
application-hosting environment.  
 

Standard Layers 



The Cloud 
PaaS 

SaaS 
PaaS 
IaaS 



The Cloud 
PaaS 

SaaS 

PaaS 

SaaS 

IaaS 

•  Hosting Environment 
– Only HE configuration required for the SaaS 
•  The SLA 



The Cloud 
PaaS 

•  A PaaS is also a SaaS… 
•  This seems to be confusing 
– Many Services marketed as PaaS fail to act as a 

hosting environment 
– Fully managing services on top of them 
– Tend to behave more like services on which to 

take a dependency 



The Cloud 
PaaS 

IaaS 

PaaS 

Hardware 

Operating System 

Process 

SaaS 

Elasticity 



The Cloud 

•  Autonomy 
–  Sensors/Effectors 
–  No human need apply 

•  Costly and error-prone 
•  Scalability 

–  The structure makes it possible to adapt to changing loads 
•  Horizontal scalability as a condition 

–  Vertical should also be considered 

•  Adaptivity 
–  Amount of resources adapts to circumstances 

•  Driven by SLA 

 

Generic Elasticity requirements 



The Cloud 

•  SLA-Awareness 
– SLA made explicit to PaaS 
– Drives all PaaS decissions 

•  Composability 
–  Inter-relations are important 
– Gives important hints about behavior 

•  Service continuity in software updates 
– Changes in software must keep service running 

 

PaaS Elasticity requirements 



PaaS Elasticity 
Autonomy 

Monitor 

Analyze 

Plan 

Execute 



PaaS Elasticity 

•  Replication – Horizontal Scalability 
–  Vary number of instances of particular components 

•  Complication: consistency 
–  Use weak models when possible 

–  Load balancing mechanism 
•  Sticky sessions to maintain “state” 

 
 

Scalability management 

B 

B 



PaaS Elasticity 

•  Replication – Horizontal Scalability 
–  Vary number of instances of particular components 

•  Complication: consistency 
–  Use weak models when possible 

–  Load balancing mechanism 
•  Sticky sessions to maintain “state” 

 
 

Scalability management 

B 

B 



PaaS Elasticity 

•  Replication – Horizontal Scalability 
–  Vary number of instances of particular components 

•  Complication: consistency 
–  Use weak models when possible 

–  Load balancing mechanism 
•  Sticky sessions to maintain “state” 

 
 

Scalability management 

? 

B 



PaaS Elasticity 

•  Re-dimensioning 
–  Change the capacity of the environment 

•  Needs spare capacity 
•  Reduce complexity by having discrete choices 

–  Lack of generalized support for run-time changes 
•  Downtime possible 

 

Scalability management 

I1C1 I1C2 I1C1 I1C2 



PaaS Elasticity 

•  Migration 
–  Challenge: state 

•  Including network connections 
•  Bandwidth concerns 

 

Scalability management 

I1C1 I1C2 

I1C1 I1C2 



PaaS Elasticity 
Scalability management 

I1C1 I1C2 

I1C1 I2C2 

I1C1 I1C2 I2C2 



PaaS Elasticity 

•  Sharma (Kingfisher):  
–  Efficiency in resource Provisioning 
–  Then Minimize latency 
–  Mixture of several approaches 
–  Federates Private/Public IaaS 

•  Re-dimensioning in private 
•  Knauth-Fetzer 
–  Live migration 

•  Lengthy transfer times/Potential disruption in service 
–  Stop/Restart 

•  Restart on-demand: faster/lower latency 

 

Scalability management 



PaaS Elasticity 

•  Two different dimensions:  
– Adaptability 

•  Potential of adapting a system 
–  Designed with this in mind 

•  Means needed to be scalable & meet QoS 
– More general concept than just scale 

– Adaptivity 
•  Adaptability & finds out when it is time to adapt 
•  How to adapt? 

–  Autonomy must be part of the equation 

Being Adaptive 



PaaS Elasticity 

Proactive 
 

Adaptivity approaches 

Reactive 



PaaS Elasticity: Adaptivity 

•  Come up with two models 
– Load Prediction 
– Performance prediction 
– How? 

•  Fit current facts 
•  Predict the future 
•  Reconfigure if predictions warrant it 
– According to a performance model… 

Proactive 



PaaS Elasticity: Adaptivity 

•  Decide what to monitor 
– Must be an indication of performance 
– Must be easy to measure 
–  Examples: Resource usage 

•  CPU usage 
•  Memory Usage 
•  …. 

•  Reconfigure if 
–  Performance endangered 
– Resources idle 

Reactive 



Proactive Adaptivity 

•  Performance by design 
– Reliable software must be “performant” 

•  If architecture is wrong,  
– Reachable performance will be poor 
– Care with components and inter-dependencies 
– Care with software life cycle: changes happen 

•  But… also 
– Build a performance model 

•  With enough detail to predict performance from inputs 

Software Performance Prediction (SPP) 



Proactive Adaptivity 

•  At design time 
– Based on software architecture 

•  Requires a behavioral (code) model 
•  Somebody (Soft. Architect) maps both  
•  Difficulties 
– Gap between performance/behavioral models 
– Behavioral models may change often 

SPP Techniques 



Proactive Adaptivity 

•  Many approaches use UML diagrams for 
behavioral models 
–  Automate diagrams,… 

•  Generating variants of queuing networks for 
performance models 
– Good thing: expressive power for composability 

•  Help identify problematic components 
–  Qualitative at high levels 

•  Other: 
–  Process algebras, Petri nets,… 

SPP Techniques 



Proactive Adaptivity 

•  A PaaS would be in a good position 
– Provides tools for modeling 
– Result is directly understood by PaaS hosting 

environment 
•  Drives decisions 

•  However ... 

SPP Techniques 



Proactive Adaptivity 

•  Problem: 
– Software is not built this way in the real world 
–  In a complex product, many different actors 

intervene 
•  With different competence levels 
•  At different times 
•  From different organizations 
•  Even if all are competent 

–  The complexity of the composition makes it difficult to validate 
models 

–  The real model is the code! 
•  As it mutates too rapidly 

SPP Techniques 



Proactive Adaptivity 

•  A PaaS would be in a good position 
– Provides tools for modeling 
– Result is directly understood by PaaS hosting 

environment 
•  Drives decisions 

•  However ... 
– We can only hope for a relatively high level of 

description from the designers/architects 
•  And drive other approaches… 

SPP Techniques 



Proactive Adaptivity 

•  Produce a high level description of a service 
– Components 
–  Intra-dependencies 

•  Obtain a high-level performance model 
– Parameterized 

•  Deploy with SLO targets 
– Benchmark 
– Fit parameters 

SPP Techniques: Mining the model 



Proactive Adaptivity 

•  Akin to data-mining 
– Statistical analysis/learning of load 
– Some approaches combine several predictive 

methods 
•  Adjust weights as they are contrasted 

•  On occasions, we have extra information 
– Some SaaS are subject to periodic/point-in-time 

peaks which are known 
•  Burst-type loads fall in this category 
•  Two-stage services  

Workload prediction 



Reactive Adaptivity 

•  Set of rules based on metric thresholds 
– Rules generally static 
– Thresholds may vary over time 
–  Implicitly or explicitly based on some 

performance model 
•  Metrics observations predict performance. 

•  Inputs for decisions based on current 
measurements by monitoring system 

Feedback-driven reconfiguration 



Reactive Adaptivity 

•  Questions 
– How often to monitor/measure 
– How many thresholds per metric 
– How many metrics to observe 
– And… 
– What works better 

•  Prediction 
•  Reaction 

Feedback-driven reconfiguration 



Reactive Adaptivity 

•  How often to measure/act 
•  How many thresholds 
•  Predictive vs Reactive 
•  At least one work on the subject 
– Metric: CPU utilization 
– One vs two thresholds 
– 1m vs 5m measurement period 

•  Predictor 
– Simple statistical adjustment over latest history 

Feedback-driven reconfiguration 



Reactive Adaptivity 

•  For 1 m intervals 
–  Predictive bettered reactive 

•  For 5m intervals… 
– Single-threshold policy betters predictive 

•  Even when predictions taken every 1m 
•  However 
– Not clear the comparison clarifies much 

•  What about other predictors? 
– But at least raises some doubts on the value of 

“predicting” 

Feedback-driven reconfiguration 



PaaS Elasticity 

•  Guarantees a service provider assures 
– Under conditions that must be met by a service 

user 

•  IaaS focus on availability 
– Also on reserve capacity available  

•  SaaS focus on… 
– Availability but at given performance levels 

•  SLOs 

What to do with SLA 



PaaS Elasticity 

•  What should PaaS focus on? 
– Guaranteeing SaaS SLOs 

•  At a price J 
•  Challenge: 
– Managing SLOs from different SaaS 
–  Efficiently for PaaS providers 
–  Predicting the cost for its SaaS 
– Better than SaaS provider can do themselves 
– Many more… 
– Must impose SaaS-Expression to take on this job 

SLA of PaaS 



Compound Services 

•  Most studies use single-component services 
•  More flexibility 

–  Higher granularity of decisions 
–  Potentially, partial functionality 

•  Under failure conditions 
–  Scaling may affect a simple component 

•  Not a large one 
–  Savings in resources being used 

–  Prediction beyond a component in trouble 
•  May indicate need to also act on dependencies 
•  Better predictability 

•  It is part of the behavioral model 
•  Of course,…, reusability 

Why 



Software Upgrades 

•  Software is rarely static 
– Unless dead 

•  Most of it is developed in cycles that produce 
incomplete/imperfect/unfulfilled functionality 

•  Upgrades MUST be contemplated 
–  This affects IaaS and PaaS providers too… 
–  Ad-hoc methods for them 

•  PaaS-supported methods for SaaS 

What is the impact? 



Software Upgrades 

•  Global Consistency 
•  Service Availability 
– Quiescence 

•  Coexistence => Service continuity 
– Dynamic versioning tagging requests 

•  State transfer 
–  Problematic without replication 

•  Minimize overhead 
– Many tasks to be performed 

Factors 



Ideal 

Cloud 

Admi
ssion 

App 
SaaS 

How close are we? 



Ideal 

PaaS 

Admi
ssion 

App SaaS 

How close are we? 

PaaS Tools 

IaaS 

Not close enough: No system in this space 

Monitor 

SLA Model 



Open Questions 

•  Everything SLA 
–  Difficult to capture the SLO aspects 

•  What is the service, in sufficient detail? 
–  How to capture reciprocals/obligations 

•  To derive penalties, when due 
–  How to express PaaS SLA given SaaS SLA 
–  Predict/React/Both? 

•  No clear approach (yet) to avoid complex performance models 
•  Evaluation periods 

–  Is it worth it? 
•  Are simple reactive strategies enough? 

•  Fool-proof upgrades 
•  Dealing with dependencies 
•  Dealing with failures 


