
www.bsc.es

Programming the Cloud with PyCOMPSs:
a task-based approach

7th Annual IMDEA Networks Workshop
Madrid, June 11th 2015

Outline

 Motivation
–  Issues programming the cloud
–  BSC approach
–  Pillars

  BSC views on programming models
–  StarSs
–  PyCOMPSs

  Summary and projects

2

Computation platforms

  New architectures and organization of processors
–  Multicore

•  Including vector units
–  GPU/accelerators
–  FPGAs

  Shift on programming
paradigms:
–  From sequential to parallel
–  New instructions/languages

  Computing paradigms:
–  From Clusters, through Grids, to Cloud

3

Application programming

Simple interface
Sequential program

Regular processors

Programming language

Programs
“decoupled”

 from computing
platform

Applications

Programming evolution for distributed programming

  Distributed computing APIs make programming more
complicated

Programming language + API

Applications

Program logic
+

Platform
specificities

BSC vision on programming models

6

General purpose
Task based

Single address space

Intelligent runtime,
parallelization,

distribution,
interoperability

Program logic
independent of

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API

Pillars for BSC strategy on programming models

Programmability Performance
optimization

Portability Efficient data
access

7

Programmability
  Capability of being programmable
  …but good programmability of a programming

model refers to
–  Easy to be used to develop applications
–  Easy to be read, good expressivity
–  More semantics with less lines of codes

  Sequential programming
–  Maybe we can think in parallel, but we communicate sequentially
–  One think at a time, do not need synchronization
–  Most programming languages are thought to be executed sequentially

  Parallel and distributed programming
–  The user must express parallelism, data distribution, and typically synchronization and

communication
–  The user needs to manage data transfers between nodes
–  The population of users who can effectively program parallel and distributed is a small

fraction

8

Portability

  Software portability
–  Measure of how easily an application can be

executed in different computing environments
–  Requires generalized abstraction between the application logic and

system interfaces
–  Key issue for development cost reduction

  A computer software application is considered portable
–  If the effort required to adapt it to the new environment is within

reasonable limits

  Issues
–  New ISAs – Extensions to vector instructions
–  New Architectures - GPUs
–  In distributed environments: different middlewares

•  I.e., cloud APIs

9

Performance optimization

  Methodologies to make applications faster
  From sequential to parallel/distributed
  … but also

–  Vectorization
–  GPUs

  Methodologies to make applications more efficient
–  Performance analysis
–  Monitoring
–  Performance tuning

10

Data access revolution

  New storage devices
–  NVRAM
–  Storage Class Memories (SCM)

  Resemble more memory than storage
–  Low latency, high bandwidth, byte-addressable interface
–  Using them as block devices for a file system does not seem to be the

best option

  Imply new storage methodologies
  May imply a disruption on how data is accessed

11

Programming with COMPSs
  Sequential programming
  General purpose programming language + annotations/hints

–  To identify tasks and directionality of data
  Task based: task is the unit of work
  Simple linear address space
  Builds a task graph at runtime that express potential concurrency

–  Implicit workflow
  Automatic on-the-fly creation of a

task dependency graph
  Exploitation of parallelism

  … and of distant parallelism
  Agnostic of computing platform

–  Enabled by the runtime
for clusters, clouds and
grids

12

Open Source
http://compss.bsc.es

Custom	 Loader	

Grids	 	
Clusters	
Clouds	

COMPSs: how does it works?

Language	
bindings	

Files,
objects

Tasks Task	 	
intercep7on	

Java Python
C/C++ TDG

User	 code	 	
+	 task	

annota7ons	

Why Python?

  Python is powerful... and fast;
plays well with others;
runs everywhere;
is friendly & easy to learn;
is Open. *
  Its design philosophy emphasizes code readability, and its
syntax allows programmers to express concepts in fewer lines
of code than would be possible in languages such as C
  Large community using it, including scientific and numeric
  Object-oriented programming and structured programming are
fully supported
  Large number of software modules available (38,000 as of
January 2014)

14 * From python.org

Python (PyCOMPSs) syntax

  Based on regular/sequential
Python code

  Decorators to identify tasks
  Small API for data

synchronization

15

class Foo(object):
 @task()
 def myMethod(self):
 …

foo = Foo()
myFunction(foo)

foo.myMethod()
…
foo = compss_wait_on(foo)
foo.bar()

Main Program

Function definition

@task(par = INOUT)
def myFunction(par):
 …

myF

myM

synch

OpenStack

16

Runtime System

  Platform agnostic
  Support for different

grid middlewares
  Cloud interoperability:

–  Public and private
–  Heterogeneous

clouds

17

COMPSs Runtime: scheduling and resource
management
  Task Scheduler

–  Assigns tasks to VMs or physical resources
–  Each VM or resource has its own task queue

  Scheduling Optimizer
–  Checks status of workers
–  Can decide

•  To perform load balancing
•  Create/destroy new VMs

  Resource Manager: elasticity
–  Manages all cloud middleware related features
–  Holds information about all workers and about cloud providers
–  Scheduler Optimizer sends to the RM requirements about new VM characteristics
–  Resource Manager, evaluates the cloud providers alternatives and chooses the

best option
•  More economic
•  The decision can be to open a new private or public VM

–  For each Cloud provider, a data structure stores the different available instances
(with its features) and the connector that should be used

18

Interoperability to cloud middleware through connectors
  The runtime communicates with the Cloud by means of Cloud

connectors
  The connectors implement a common interface between the runtime and

cloud provider
  Connectors abstract the

runtime from the particular API
of each provider

  This design facilitates the
addition of new connectors for
other providers

  Example:
–  Integration to EGI FedCloud

through OCCI connector
  Available connectors

–  OpenNebula
–  OpenStack
–  Amazon

19

 COMPSs integration with EGI FedCloud

  COMPSs Application: implementation
of the application logic, where some
tasks are executed remotely on EGI
FedCloud resources

  Cloud Connectors
  OCCI Connector: translates
COMPSs resource management
calls to OCCI operations.

  Different provider’s configuration set
up through COMPSs configuration
files

  COMPSs available in the EGI
software marketplace

Elasticity in the Cloud

20

  Dynamic creation /
destruction of VMs

–  Depending on task load

  Bursting to meet peak
demands

–  Private Cloud (EMOTIVE)
–  Public Cloud (Amazon)

  Save VMs for later use
–  Amazon: use the whole

hour slot

  Reuse of VMs
  VM deadlines

Elasticity in the Cloud

Scalability
–  Private Cloud: the entire

workflow in a single
provider

–  Hybrid (Private + Public):
tasks and data
distributed over two
distant providers

22

 Composite

 Composite

 Composite

Service Class COMPSs RT

S
er

vi
ce

 In
te

rfa
ce

C
lie

nt

Service Container

...

...

Service

Method

Method

Service orientation at two levels:
–  Specific COMPSs tasks can be services
–  COMPSs applications can be deployed as a service

COMPSs to deploy SaaS

Performance optimization
  COMPSs runtime instrumented to generate post-

mortem Paraver tracefiles
Paraver
–  Powerful tool for performance analysis
–  Enables different views of a trace
–  Histograms and multiple stadistics

  Enables fine tuning of COMPSs applications

23

Performance monitoring

  Information collected at runtime about application
–  Task graph
–  Resources used
–  Workload

  Dynamic views at execution time
  Post-portem views

24

25

COMPSs IDE

  Graphical interface to help developers with COMPSs
applications
–  Annotation of main program and tasks
–  Generation of project and resources files (xml)
–  Deployment in the infrastructure

  Developed as Eclipse plugin
–  Available in the Eclipse marketplace

26

Abstraction of computer middleware

e.g. NoSQL DB

e.g. MapReduce

e.g. Cloud

e.g. Machine Learning

e.g. Linux

e.g. FPGAs, GPUs

e.g. Genomics

27

BSC Big Data related projects

NoSQL
Data

Management
Research

Extending
PyCompSs
to NoSQL

DB
High

Performance
Key/Value

Stores

Improving
Cost-effect.
of Big Data

Deploy.

Mngt.
of Data

Streaming
Env.

LS

Software
Defined

Env

Big Data
Application
Monitoring

CS CASE LS LS ES

Large-scale
graph proc.

for RT

Deep
Learning

Multimedia
Big Data

Computing

Deep
Learning
Grow

Smarter

Deep
Learning

CASE CASE

Optical
Network

& Memories

BigIoT

Fog
Computing

LS

DB
Analytics
Accelerati

on

R
o
a
d
m
a
p

28

COMPSs & Big Data: application scenarios

Model =
{neurons}

Simulation1
Simulation2

Potentials=
{sequence
for each
neuron}

•  Implementation:
•  Persistent, Distributed, Resilient

•  Shared object space
•  Management: create/delete
•  Access: get, put
•  Query, iterators

•  Concurrency
•  Flow control (seq/par)
•  Synchronization

•  Consistency

29

PyCOMPSs integration with Big Data

  Architectural design

Active Store

PyCOMPSs/COMPSs

Hecuba

hierarchical storage + computing resources

dataClay
self-contained objects

API (data access and control flow)

App

Key-value DS
(Cassandra/Hbase,…) Storage

Others

Adaptive internal
structure

Compute capability

Goal: provide persistent objects infrastructure integrated
as naturally as possible with the programming language
and with the COMPSs inherent concurrency

Resource
management
policies:
data organization,
query plans,
computation
scheduling

dataCLay: platform that manages Self-Contained Objects (data and
code)

  Platform features:
–  Store and retrieve objects as seen by applications
–  Remote execution of methods
–  Add new classes
–  Enrich existing classes: With new methods and with new fields

dataClay

30

Backend

Application

dataClay

Application

Data

Enrichment Enrichment

Hecuba

  Set of tools and interfaces that aim to facilitate an efficient and
easy interaction with non-relational data-bases
  Currently implemented on Apache Cassandra database

–  However, easy to port to any non-relational key-value data store
  Mapping of Python dictionaries into Cassandra tables

–  Both consist on values indexed by keys
–  Only Python data type supported right now

  Redefinition of Python iterators
–  Accessing blocks of keys
–  Exploiting locality

31

Integration COMPSs – Common Storage API

32

Constructor(name)

Query / update

COMPSs

task

Application
task

task

AS

Common API

makePersistent

Iter / next getID

deletePersistent

getLocations newReplica

newVersion

consolidateVersion

getByID

Stub Static

OIDs

Cassandra dataClay Others

PyCOMPSs and data persistency

33

class Foo(object):
 """ Property bar int """
 def init (self, val):
 self.bar = val

@task()
def another func(foo):
...
o = Foo('MyFooObject')
...
another func(o)

@task()
def my func(foo1, foo2):
 sum = foo1.bar + foo2.bar
 print 'Sum:', sum

o1 = Foo(1)
o2 = Foo(2)
...
o1.make persistent('MyFooObject')
...
my func(o1, o2)

Class definition

Producer Consumer

Use of identifiers

•  PyCOMPSs objects can be
made persistent

•  Tasks can operate on persistent
and not persistent objects

•  PyCOMPSs runtime favours locality
by scheduling tasks on the resource
where the object is stored

COMPSs + Hecuba: prototype implementation

34

Cassandra
topology

PyCOMPSs
workers

Time (secs)

4, 4, 0, 0 4, 4, 0, 0 19228
8, 8, 0, 0 8, 8, 0, 0 10273
16, 16, 0, 0 16, 16, 0, 0 12867
16, 16, 16, 16 16, 16, 16, 16 6644

hyperthreading

Minerva cluster
•  5 nodes
•  2 Intel Xeon Quad-Core L5630

2.13GHz, 24 GB RAM
•  6 TB HDD
•  Gigabit Ethernet

Summary

  Task-based programming is an approach based of sequential
programming that is able to deploy scientific workflows
  BSC approach is the StarSs programming model, with
different implementations
  COMPSs and its binding to Python (PyCOMPSs) has been
designed taking into account the following aspects
–  Programmability
–  Portability
–  Performance optimization
–  Integration with new efficient data access approaches

  Current developments consider the integration with new
storage technologies in order to face the BigData challenges

35

Figure 29: Use of the HBP platforms to accelerate drug development. Optimizing drug discovery and clinical trials

Use Case 2: Developing new drugs for brain disorders

Model
of healthy brain

Model
of diseased brain

Target
identification

New drug

Clinical trials

Side effects

In silico
 search for treatments

Computational chemistry &
Molecular Dynamics simulations

Preclinical trials

Binding kinetics

Multi-level biological
signature of disease

What	 is	 the	 HBP?	 Human Brain Project

  A 10-year European initiative to
understand the human brain,
enabling advances in neuroscience,
medicine and future computing

  One of two FET Flagships

  A consortium of 256 researchers
from 146 institutions, in 24
countries across Europe, in the US,
Japan and Chin

  BSC contributes with programming
models and resource management

37

Severo Ochoa

  The BSC-CNS has been accredited with the Severo Ochoa
Center of Excellence, an award given by the Spanish Ministry
as recognition of leading research centres in Spain that are
internationally known organisations in their respective areas.
  Involves all BSC R&D departments
  Four subprojects:

–  Hardware and software technologies,
to facilitate the introduction of Exascale computing and managing large
amounts of data, focusing on the improvement of energy efficiency

–  Personalized medicine, to design drugs to fit the needs of each patient
–  Heart simulation, to perform modelling and simulation with the primary

objective to determine how the heart muscle works
–  Air quality and climate models, specially in areas that affect health

(Sahara dust concentration)

COMPSs

  Project page: http://www.bsc.es/compss
Direct downloads page:
http://www.bsc.es/computer-sciences/grid-computing/comp-
superscalar/download
–  Source code
–  Sample applications & development virtual appliances
–  Tutorials
–  Red-Hat & Debian based installation packages

38

  Rosa M Badia
  Pol Alvarez (part time)
  Javi Conejero
  Sandra Corella (part time)
  Carlos Diaz
  Jorge Ejarque
  Fredy Juarez

Daniele Lezzi
  Francesc Lordan
  Cristian Ramon
Raul Sirvent

39

The COMPSs team

Other CS members

  Toni Cortes
  Anna Queralt
  Jonathan Martí
  Jordi Torres
  Yolanda Becerra
  David Carrera
  Jesus Labarta
  Eduard Ayguadé

40

www.bsc.es

Thank you!
Downloads: http://www.bsc.es/computer-sciences/grid-computing/

comp-superscalar/download
Support mailing list at http://compss.bsc.es/support-compss

Announces mailing list at http://compss.bsc.es/announces-compss

